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Problem

* |R systems are exposed to constant change

= Evaluations abstract these changes

= New methodologies needed to compare results
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How can we quantify the impact of
changes in the evaluation setup
on the retrieval results?
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Contributions

C1: Definition of a classification schema to

describe evolving retrieval scenarios

2: Propose measures to quantify change

3: Test methodology in an evaluation study

4: Discuss the results and challenges
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ABSTRACT

Information retrieval systems have been evaluated using the Cran-
field paradigm for many years. This paradigm allows a systematic,
fair, and reproducible evaluation of different retricval methods in
fixed experimental environments. However, real-world retrieval sys-
tems must cope with dynamic environments and temporal changes
that affect the document collection, topical trends, and the indi-
vidual user’s perception of what is considered relevant. Yet, the
temporal ion in IR evaluations s still und

To this end, this work investigates how the temporal generaliz-
ability of effectiveness evaluations can be assessed. As a conceptual
model, we lize Cranfield-typ i to the temporal
context by classifying the change in the essential components ac-
cording to the create, update, and delete operations of persistent
storage known from CRUD. From the different types of change
different evaluation scenarios are derived and it is outlined what
they imply. Based on these scenarios, renowned state-of-the-art
retrieval systems are tested and it is investigated how the retrieval
effectiveness changes on different levels of granularity.

We show that the proposed measures can be well adapted to
describe the changes in the retrieval results. The experiments con-
ducted confirm that the retrieval effectiveness strongly depends
on the evaluation scenario investigated. We find that not only the
average retrieval performance of single systems but also the relative
system performance are strongly affected by the components that
change and to what extent these components changed.
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1 INTRODUCTION

Information Retrieval (IR) systems are exposed to constant change.
The searched document collection evolves as new documents are
added, removed, or updated [6, 22, 25]; the users always cncounter
new information needs [18, 34, 45], and even the relevance is
not static since information become outdated or opinions may
change [13, 46]. In stark contrast, most IR experiments ignore the
temporal dimension by only relying on snapshots or short time
frames. By that, in test collection evaluations, all temporal changes
are abstracted, and their influence on the effectiveness is minimized.
Multiple sources suggest that IR experiments based on test collec-
tions are not temporarily persistent [19, 25, 44]. Although there
are some evolving dynamic test collections that span across more
than one point in time, we identify the temporal dimension in IR
evaluations as under-studied.

To investigate temporal dynamics in IR, we focus on the question:
How can the impact of temporal changes in the evaluation setup
on the retrieval results be quantified? Therefore, describing the
changes in the retrieval setup and measuring their impact on the
effectiveness are the primary concerns. We focus on test collection
evaluations as a starting point and address changes in documents
and relevance labels. We propose to classify the changes in the
different components of Cranfield test collections by the CREATE,
UDATE and DELETE operation of persistent storage known as CRUD
as high-level differentiation. Further, to investigate how changed ef-
fectiveness can be quantified different measures that are established
in reproducibili ions are employed. To initially validate the
proposed methodology, in the experimental evaluation, we repeat-
edly evaluate five state-of-the-art IR systems in controlled evolved
experimental setups based on the three established test collections:
TripClick [39], TREC-COVID [48], and LongEval [2]. These test
collections cover a range of temporal changes as highlighted in
Fig. 1. It is shown how the adapted measures describe how the
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initial i d (at to) relates to the effectiveness
measured at a later point in time (t,). Different aspects of changing
effectiveness, independent of relevance, on the topic level and with
a focus on the system effect, are provided. This allows us to set the
established systems into context so that new insights about them
can be gained.

Since changes are unavoidable over time, we see great benefits

in reintroducing temporal d ics into test coll evaluations
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Investigating temporal changes can contribute to researching the

ility of test collections and hasize the influence of the
point of creation. Further, it can contribute to the field of test collec-
tion maintenance and to ensure reliably fair evaluations. Therefore,
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Evolving Rankings

= Evolving test collection influence the rankings
= Systems are static but rankings change
= Similarity deteriorates over time

= Effectiveness fluctuates over time

= Ranking of systems changes
= No agreement between effectiveness and ranking similarity

The measured effectiveness is not temporally
reliable by default

TREC-COVID RBO@100
to
51
BM25 to 0.317
ts 0.207
t4 0.177

CREATE, UPDATE, DELETE

ColBERT t 0.235
t3 0.156
tq 0.136
MonoT5 0.311
t3 0.190
4 0.161
RRF ty 0.309
i3 0.191
t4 0.139
d2q ty 0.128
t3 0.083

ta 0.069
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Evolving Rankings

= Evolving test collection influence the rankings
= Systems are static but rankings change
= Similarity deteriorates over time

= Effectiveness fluctuates over time
= Ranking of systems changes
= No agreement between effectiveness and ranking similarity

The measured effectiveness is not temporally
reliable by default
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Comparing Effectiveness

= Direct comparison of effectiveness is not sufficient
= Recall base changes

= Mainly the environment effect is measured A 5@,
% > At
= Advanced comparison strategy needed E P@’ P@®
= Relate the experimental system to a pivot system B Ry {
= Compare the deltas s St‘l ,

Time
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Comparing Effectiveness
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Conclusions

o i}

Results depend on We need to account
the point in time for the temporal
dimension

@ ? o

Most effective Per topic differences How do users perceive
system is not the can amplify the changes?
most robust
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